Publications de Fabio Nobile

[138]
F. Nobile; E. Vidlicková : MATHICSE Technical Report : A posteriori error estimation for the stochastic collocation finite element approximation of the heat equation with random coefficients. 2019-04-30.
[137]
M. C. Martin : Stochastic approximation methods for PDE constrained optimal control problems with uncertain parameters. Lausanne, EPFL, 2019. DOI : 10.5075/epfl-thesis-7233.
[136]
M. Pisaroni; F. Nobile; P. Leyland : Continuation Multilevel Monte Carlo Evolutionary Algorithm for Robust Aerodynamic Shape Design; Journal of Aircraft. 2019. DOI : 10.2514/1.C035054.
[135]
V. Rey; S. Krumscheid; F. Nobile : Quantifying uncertainties in contact mechanics of rough surfaces using the multilevel Monte Carlo method; International Journal of Engineering Science. 2019. DOI : 10.1016/j.ijengsci.2019.02.003.
[134]
E. Arnone; L. Azzimonti; F. Nobile; L. M. Sangalli : Modeling spatially dependent functional data via regression with differential regularization; Journal of Multivariate Analysis. 2019. DOI : 10.1016/j.jmva.2018.09.006.
[133]
M. Pisaroni; F. Nobile; P. Leyland : MATHICSE Technical Report : A continuation-multilevel Monte Carlo evolutionary algorithm for robust aerodynamic shape design. 2018-04-10.
[132]
V. Rey; S. Krumscheid; F. Nobile : MATHICSE Technical Report : Quantifying uncertainties in contact mechanics of rough surfaces using the Multilevel Monte Carlo method. 2018-04-10.
[131]
M. Martin; S. Krumscheid; F. Nobile : MATHICSE Technical Report : Analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters. 2018-03-09.
[130]
E. Arnone; L. Azzimonti; F. Nobile; L. M. Sangalli : MATHICSE Technical Report : Modelling spatially dependent functional data via regression with differential regularization. 2018-01-17.
[129]
S. Brugiapaglia; S. Micheletti; F. Nobile; S. Perotto : Wavelet-Fourier CORSING techniques for multi-dimensional advection-diffusion-reaction equations. 2018.
[128]
G. Migliorati; F. Nobile : Stable high-order randomized cubature formulae in arbitrary dimension; .... 2018.
[127]
M. C. Martin; F. Nobile : PDE-constrained optimal control problems with uncertain parameters using SAGA; .... 2018.
[126]
F. Bonizzoni; F. Nobile; I. Perugia; D. Pradovera : Fast Least-Squares Padé approximation of problems with normal operators and meromorphic structure; .... 2018.
[125]
F. Bonizzoni; F. Nobile; I. Perugia; D. Pradovera : Least-Squares Padé approximation of parametric and stochastic Helmholtz maps. 2018.
[124]
F. Nobile; R. Tempone; S. Wolfers : Sparse approximation of multilinear problems with applications to kernel-based methods in UQ; Numerische Mathematik. 2018. DOI : 10.1007/s00211-017-0932-4.
[123]
D. S. Guignard; F. Nobile : A Posteriori Error Estimation for the Stochastic Collocation Finite Element Method; SIAM Journal on Numerical Analysis. 2018. DOI : 10.1137/17M1155454.
[122]
I. Colombo; F. Nobile; G. Porta; A. Scotti; L. Tamellini : Uncertainty Quantification of geochemical and mechanical compaction in layered sedimentary basins; Computer Methods in Applied Mechanics and Engineering. 2018. DOI : 10.1016/j.cma.2017.08.049.
[121]
S. Krumscheid; F. Nobile : Multilevel Monte Carlo Approximation of Functions; SIAM/ASA Journal on Uncertainty Quantification. 2018. DOI : 10.1137/17M1135566.
[120]
E. Musharbash; F. Nobile : Dual Dynamically Orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions; Journal of Computational Physics. 2018. DOI : 10.1016/j.jcp.2017.09.061.
[119]
S. Brugiapaglia; F. Nobile; S. Micheletti; S. Perotto : A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems; Mathematics of Computation. 2018. DOI : 10.1090/mcom/3209.
[118]
D. S. Guignard; F. Nobile : MATHICSE Technical Report : A posteriori error estimation for the stochastic collocation finite element method. 2017-11-03.
[117]
M. Pisaroni; S. Krumscheid; F. Nobile : MATHICSE Technical Report : Quantifying uncertain system outputs via the multilevel Monte Carlo method – Part I: Central moment estimation. 2017-06-11.
[116]
A. Chernov; H. A. Hoel; K. J. Law; F. Nobile; R. Tempone : MATHICSE Technical Report : Multilevel ensemble Kalman filtering for spatio-temporal processes. 2017-10-20.
[115]
A. L. Haji Ali; F. Nobile; R. Tempone; S. Wolfers : MATHICSE Technical Report : Multilevel weighted least squares polynomial approximation. 2017-09-11.
[114]
E. Musharbash; F. Nobile : MATHICSE Technical Report : Symplectic dynamical low rank approximation of wave equations with random parameters. 2017-08-29.
[113]
S. Krumscheid; F. Nobile : MATHICSE Technical Report : Multilevel Monte Carlo approximation of functions. 2017-04-10.
[112]
E. Musharbash; F. Nobile : MATHICSE Technical Report : Dual dynamically orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions. 2017.
[111]
M. Pisaroni : Multi Level Monte Carlo Methods for Uncertainty Quantification and Robust Design Optimization in Aerodynamics. Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-8082.
[110]
N. Linde; D. Ginsbourger; J. Irving; F. Nobile; A. Doucet : On uncertainty quantification in hydrogeology and hydrogeophysics; Advances in Water Resources. 2017. DOI : 10.1016/j.advwatres.2017.10.014.
[109]
E. Musharbash : Dynamical Low Rank approximation of PDEs with random parameters. Lausanne, EPFL, 2017. DOI : 10.5075/epfl-thesis-7813.
[108]
M. Pisaroni; F. Nobile; P. Leyland : A Multilevel Monte Carlo Evolutionary Algorithm for Robust Aerodynamic Shape Design. 2017. 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, Colorado, USA, 5-9 June 2017. DOI : 10.2514/6.2017-3329.
[107]
M. Pisaroni; F. Nobile; P. Leyland : MATHICSE Technical Report : Continuation Multi-Level Monte-Carlo method for Uncertainty Quantification in Turbulent Compressible Aerodynamics Problems modeled by RANS. 2017-05-11.
[106]
M. Pisaroni; F. Nobile; P. Leyland : A Continuation Multi Level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamics; Computer Methods in Applied Mechanics and Engineering. 2017. DOI : 10.1016/j.cma.2017.07.030.
[105]
F. Bonizzoni; F. Nobile; I. Perugia; F. Bonizzoni; F. Nobile : Convergence analysis of Padé approximations for Helmholtz frequency response problems; ESAIM: Mathematical Modelling and Numerical Analysis. 2017. DOI : 10.1051/m2an/2017050.
[104]
D. S. Guignard; F. Nobile; M. Picasso : A posteriori error estimation for the steady Navier-Stokes equations in random domains; Computer Methods in Applied Mechanics and Engineering. 2017. DOI : 10.1016/j.cma.2016.10.008.
[103]
A. Cohen; G. Migliorati; F. Nobile : Discrete least-squares approximations over optimized downward closed polynomial spaces in arbitrary dimension; Constructive Approximation. 2017. DOI : 10.1007/s00365-017-9364-8.
[102]
M. Pisaroni; F. Nobile; P. Leyland : MATHICSE Technical Report : A continuation multi level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible aerodynamics. 2016-07-27.
[101]
F. Bonizzoni; F. Nobile; I. Perugia : MATHICSE Technical Report :Convergence analysis of Padé approximations for Helmholtz frequency response problems. 2016-07-19.
[100]
D. S. Guignard; F. Nobile; M. Picasso : MATHICSE Technical Report : A posteriori error estimation for the steady Navier-Stokes equations in random domains. 2016-04-18.
[99]
V. Rey; J.-F. Molinari; G. Anciaux; F. Nobile; S. Krumscheid : Efficient approximation of the contact area between rough surfaces ; Engineering Mechanics Institute International Conference, Metz, France, October 25-27, 2016.
[98]
D. S. Guignard : A posteriori error estimation for partial differential equations with random input data. Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-7260.
[97]
M. Pisaroni; P. Leyland; F. Nobile : A Multi Level Monte Carlo Algorithm for the Treatment of Geometrical and Operational Uncertainties in Internal and External Aerodynamics. 2016. AIAA Aviation - 46th AIAA Fluid Dynamics Conference, Washington, D.C, 13-17 June 2016. p. 4398. DOI : 10.2514/6.2016-4398.
[96]
A. Chernov; A. Debussche; F. Nobile : Numerical methods for random and stochastic partial differential equations; Stochastics and Partial Differential Equations Analysis and Computations. 2016. DOI : 10.1007/s40072-016-0073-2.
[95]
F. Nobile; L. Tamellini; F. Tesei; R. Tempone : An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient; Sparse Grids and Applications - Stuttgart 2014; Berlin: Springer, 2016. p. 191-220.
[94]
F. Tesei : Numerical Approximation of Flows in Random Porous Media. Lausanne, EPFL, 2016. DOI : 10.5075/epfl-thesis-6860.
[93]
A.-L. Haji-Ali; F. Nobile; L. Tamellini; R. Tempone : Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity; Foundations of Computational Mathematics. 2016. DOI : 10.1007/s10208-016-9327-7.
[92]
A.-L. Haji-Ali; F. Nobile; L. Tamellini; R. Tempone : Multi-index Stochastic Collocation for random PDEs; Computer Methods in Applied Mechanics and Engineering. 2016. DOI : 10.1016/j.cma.2016.03.029.
[91]
D. S. Guignard; F. Nobile; M. Picasso : A posteriori error estimations for elliptic partial differential equations with small uncertainties; Numerical Methods for Partial Differential Equations. 2016. DOI : 10.1002/num.21991.
[90]
F. Bonizzoni; F. Nobile; D. Kressner : Tensor train approximation of moment equations for elliptic equations with lognormal coefficient; Computer Methods in Applied Mechanics and Engineering. 2016. DOI : 10.1016/j.cma.2016.05.026.
[89]
J. E. Castrillón-Candás; F. Nobile; R. Tempone : Analytic regularity and collocation approximation for elliptic PDEs with Random domain deformations; Computers and Mathematics with Applications. 2016. DOI : 10.1016/j.camwa.2016.01.005.
[88]
A.-L. Haji-Ali; F. Nobile; R. Tempone : Multi-index Monte Carlo: when sparsity meets sampling; Numerische Mathematik. 2016. DOI : 10.1007/s00211-015-0734-5.
[87]
A.-L. Haji-Ali; F. Nobile; E. von Schwerin; R. Tempone : Optimization of mesh hierarchies in multilevel Monte Carlo samplers; Stochastic Partial Differential Equations: Analysis and Computations. 2016. DOI : 10.1007/s40072-015-0049-7.
[86]
F. Nobile; L. Tamellini; R. Tempone : Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs; Numerische Mathematik. 2016. DOI : 10.1007/s00211-015-0773-y.
[85]
A. L. Haji Ali; F. Nobile; L. Tamellini; R. Tempone : MATHICSE Technical Report : Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity. 2015-11-04.
[84]
A. Cohen; G. Migliorati; F. Nobile : MATHICSE Technical Report : Discrete least-squares approximations over optimized downward closed polynomial spaces in arbitrary dimension. 2015-11-03.
[83]
S. Brugiapaglia; F. Nobile; S. Micheletti; S. Perotto : MATHICSE Technical Report : A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems. 2015-09-10.
[82]
A. L. Haji Ali; F. Nobile; L. Tamellini; R. Tempone : MATHICSE Technical Report : Multi-index stochastic collocation for random PDEs. 2015-09-10.
[81]
F. Nobile; L. Tamellini; F. Tesei; R. Tempone : MATHICSE Technical Report : An adaptive sparse grid algorithm for elliptic PDEs with lognormal diffusion coefficient. 2015-03-11.
[80]
G. Migliorati; F. Nobile; R. Tempone : MATHICSE Technical Report : Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points. 2015-03-31.
[79]
G. Migliorati; F. Nobile : MATHICSE Technical Report : Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets. 2015-01-29.
[78]
M. Motamed; F. Nobile; R. Tempone : Analysis and Computation of Hyperbolic PDEs with Random Data; Encyclopedia of Applied and Computational Mathematics. 2015. DOI : 10.1007/978-3-540-70529-1_527.
[77]
A. Abdulle; S. Deparis; D. Kressner; F. Nobile; M. Picasso : Numerical Mathematics and Advanced Applications - ENUMATH 2013. 2015.
[76]
A. Chernov; F. Nobile : Numerical Methods For Uncertainty Quantification; International Journal For Uncertainty Quantification. 2015. DOI : 10.1615/Int.J.UncertaintyQuantification.2015014190.
[75]
E. Musharbash; F. Nobile; T. Zhou : Error Analysis of the Dynamically Orthogonal Approximation of Time Dependent Random PDEs; Siam Journal on Scientific Computing. 2015. DOI : 10.1137/140967787.
[74]
G. Migliorati; F. Nobile; R. Tempone : Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points; Journal of Multivariate Analysis. 2015. DOI : 10.1016/j.jmva.2015.08.009.
[73]
G. Migliorati; F. Nobile : Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets; Journal of Complexity. 2015. DOI : 10.1016/j.jco.2015.02.001.
[72]
S. Palamara; C. Vergara; E. Faggiano; F. Nobile : An effective algorithm for the generation of patient-specific Purkinje networks in computational electrocardiology; Journal Of Computational Physics. 2015. DOI : 10.1016/j.jcp.2014.11.043.
[71]
F. Tesei; F. Nobile : A Multi Level Monte Carlo Method with Control Variate for elliptic PDEs with log-normal coefficients; Stochastic Partial Differential Equations: Analysis and Computations. 2015. DOI : 10.1007/s40072-015-0055-9.
[70]
G. Migliorati : Adaptive polynomial approximation by means of random discrete least squares. 2015. ENUMATH 2013, Lausanne, August 26-30, 2013. p. 547-554. DOI : 10.1007/978-3-319-10705-9_54.
[69]
F. Nobile; L. Tamellini; R. Tempone : Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs. 2015. International Conference on Spectral and High-Order Methods 2014 (ICOSAHOM'14), Salt Lake City, June 23-27, 2014. p. 475-482. DOI : 10.1007/978-3-319-19800-2_44.
[68]
N. Collier; A.-L. Haji-Ali; F. Nobile; E. von Schwerin; R. Tempone : A continuation multilevel Monte Carlo algorithm; BIT Numerical Mathematics. 2015. DOI : 10.1007/s10543-014-0511-3.
[67]
D. Kressner; R. Kumar; F. Nobile; C. Tobler : Low-rank tensor approximation for high-order correlation functions of Gaussian random fields; SIAM/ASA Journal of Uncertainty Quantification. 2015. DOI : 10.1137/140968938.
[66]
L. Azzimonti; L. M. Sangalli; P. Secchi; M. Domanin; F. Nobile : Blood flow velocity field estimation via spatial regression with PDE penalization; Journal of the American Statistical Association. 2015. DOI : 10.1080/01621459.2014.946036.
[65]
A. Chkifa; A. Cohen; G. Migliorati; F. Nobile; R. Tempone : Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs; ESAIM: Mathematical Modelling and Numerical Analysis. 2015. DOI : 10.1051/m2an/2014050.
[64]
M. Motamed; F. Nobile; R. Tempone : Analysis and computation of the elastic wave equation with random coefficients; Computers and Mathematics with Applications. 2015. DOI : 10.1016/j.camwa.2015.09.013.
[63]
F. Nobile; F. Tesei : MATHICSE Technical Report : A multi level Monte Carlo method with control variate for elliptic PDEs with log-normal coefficients. 2014-12-19.
[62]
F. Nobile; L. Tamellini; R. Tempone : MATHICSE Technical Report : Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs. 2014-10-02.
[61]
D. S. Guignard; F. Nobile; M. Picasso : MATHICSE Technical Report : A posteriori error estimations for elliptic partial differential equations with small uncertainties. 2014-07-21.
[60]
F. Bonizzoni; F. Nobile; D. Kressner : MATHICSE Technical Report : Tensor train approximation of moment equations for the log-normal Darcy problem. 2014-09-30.
[59]
A. L. Haji Ali; F. Nobile; R. Tempone : MATHICSE Technical Report : Multi index Monte Carlo: when sparsity meets sampling. 2014-06-17.
[58]
D. Kressner; R. Kumar; F. Nobile; C. Tobler : MATHICSE Technical Report : Low-rank tensor approximation for high-order correlation functions of Gaussian random fields. 2014-05-12.
[57]
E. Musharbash; F. Nobile; T. Zhou : MATHICSE Technical Report : On the dynamically orthogonal approximation of time dependent random PDEs. 2014-03-18.
[56]
A. L. Haji Ali; F. Nobile; E. G. B. Von Schwerin; R. Tempone : MATHICSE Technical Report : Optimization of mesh hierarchies in multilevel Monte Carlo samplers. 2014-03-12.
[55]
F. Nobile; L. Tamellini; R. Tempone : MATHICSE Technical Report : Convergence of quasi-optimal sparse grid approximation of Hilbert-valued functions: application to random elliptic PDEs. 2014-09-30.
[54]
N. Collier; A. L. Haji Ali; F. Nobile; E. G. B. Von Schwerin; R. Tempone : MATHICSE Technical Report : A continuation multilevel Monte Carlo algorithm. 2014-02.
[53]
A. Chkifa; A. Cohen; G. Migliorati; F. Nobile; R. Tempone : MATHICSE Technical Report : Discrete least squares polynomial approximation with random evaluations – application to parametric and stochastic elliptic PDES. 2014-12-16.
[52]
C. Vergara; S. Palamara; D. Catanzariti; F. Nobile; E. Faggiano et al. : Patient-specific generation of the Purkinje network driven by clinical measurements of a normal propagation; Medical & Biological Engineering & Computing. 2014. DOI : 10.1007/s11517-014-1183-5.
[51]
S. Palamara; C. Vergara; D. Catanzariti; E. Faggiano; C. Pangrazzi et al. : Computational generation of the Purkinje network driven by clinical measurements: The case of pathological propagations; International Journal for Numerical Methods in Biomedical Engineering. 2014. DOI : 10.1002/cnm.2689.
[50]
M. Annunziato; A. Borzì; F. Nobile; R. Tempone : On the Connection between the Hamilton-Jacobi-Bellman and the Fokker-Planck Control Frameworks; Applied Mathematics. 2014. DOI : 10.4236/am.2014.516239.
[49]
L. Azzimonti; F. Nobile; L. M. Sangalli; P. Secchi : Mixed Finite Elements for spatial regression with PDE penalization; SIAM/ASA Journal on Uncertainty Quantification. 2014. DOI : 10.1137/130925426.
[48]
G. Migliorati; F. Nobile; E. von Schwerin; R. Tempone : Analysis of Discrete L2 Projection on Polynomial Spaces with Random Evaluations; Foundations of Computational Mathematics. 2014. DOI : 10.1007/s10208-013-9186-4.
[47]
F. Bonizzoni; F. Nobile : Perturbation analysis for the Darcy problem with log-normal permeability; SIAM/ASA Journal on Uncertainty Quantification. 2014. DOI : 10.1137/130949415.
[46]
J. Beck; F. Nobile; L. Tamellini; R. Tempone : A quasi-optimal sparse grids procedure for groundwater flows. 2014. International Conference on Spectral and High-Order Methods 2012 (ICOSAHOM'12), Gammarth, Tunisia, June 25-29, 2012. p. 1-16. DOI : 10.1007/978-3-319-01601-6_1.
[45]
F. Nobile; M. Pozzoli; C. Vergara : Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics; Journal of Computational Physics. 2014. DOI : 10.1016/j.jcp.2014.05.020.
[44]
F. Bonizzoni; A. Buffa; F. Nobile : Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term; IMA Journal of Numerical Analysis. 2014. DOI : 10.1093/imanum/drt041.
[43]
J. Beck; F. Nobile; L. Tamellini; R. Tempone : Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients; Computers and Mathematics with Applications. 2014. DOI : 10.1016/j.camwa.2013.03.004.
[42]
F. Bonizzoni; F. Nobile : MATHICSE Technical Report : Perturbation analysis for the Darcy problem with log-normal permeability. 2013-09-17.
[41]
J. E. Castrillon-Candas; F. Nobile; R. F. Tempone : MATHICSE Technical Report : Analytic regularity and collocation approximation for PDEs with random domain deformations. 2013-12.
[40]
F. Nobile; M. Pozzoli; C. Vergara : Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics; Computers & Fluids. 2013. DOI : 10.1016/j.compfluid.2013.07.031.
[39]
M. Motamed; F. Nobile; R. Tempone : A stochastic collocation method for the second order wave equation with a discontinuous random speed; Numerische Mathematik. 2013. DOI : 10.1007/s00211-012-0493-5.
[38]
G. Migliorati; F. Nobile; E. Von Schwerin; R. Tempone : Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete $L^2$ Projection on Polynomial Spaces; SIAM Journal on Scientific Computing. 2013. DOI : 10.1137/120897109.
[37]
J. Beck; F. Nobile; L. Tamellini; R. Tempone : MATHICSE Technical Report : A quasi-optimal sparse grids procedure for groundwater flows. 2012-11.
[36]
M. Motamed; F. Nobile; R. Tempone : MATHICSE Technical Report : Analysis and computation of the elastic wave equation with random coefficients. 2012-08-23.
[35]
F. Bonizzoni; A. Buffa; F. Nobile : MATHICSE Technical Report : Moment equations for the mixed formulation of the Hodge Laplacian with stochastic data. 2012-08-21.
[34]
E. Faou; F. Nobile; C. Vuillot : MATHICSE Technical Report : Sparse spectral approximations for computing polynomial functionals. 2012-07-12.
[33]
J. Beck; F. Nobile; L. Tamellini; R. Tempone : MATHICSE Technical Report : Convergence of quasi-optimal stochastic Galerkin methods for a class of PDES with random coefficients. 2012-07-13.
[32]
F. Nobile; M. Pozzoli; C. Vergara : MATHICSE Technical Report : Time accurate partitioned\ algorithms for the solution of fluid-structure\ interaction problems in haemodynamics. 2012-01-25.
[31]
F. Nobile; C. Vergara : Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics; Milan Journal Of Mathematics. 2012. DOI : 10.1007/s00032-012-0194-7.
[30]
E. Faou; F. Nobile; C. Vuillot : Sparse spectral approximations for computing polynomial functionals; ...... 2012.
[29]
J. Beck; F. Nobile; L. Tamellini; R. Tempone : On the optimal polynomial approximation of stochastic PDEs by Galerkin and Collocation methods; Mathematical Models and Methods in Applied Sciences (M3AS). 2012. DOI : 10.1142/S0218202512500236.
[28]
F. Nobile; A. Quarteroni; R. Ruiz-Baier : An active strain electromechanical model for cardiac tissue; International Journal for Numerical Methods in Biomedical Engineering. 2012. DOI : 10.1002/cnm.1468.
[27]
G. Migliorati; F. Nobile; E. G. B. Von Schwerin; R. Tempone : MATHICSE Technical Report : Analysis of the discrete $L^2$ projection on polynomial spaces with random evaluations. 2011-12-06.
[26]
M. Motamed; F. Nobile; R. Tempone : MATHICSE Technical Report : A stochastic collocation method for the second order wave equation with a discontiuous random speed. 2011-11-07.
[25]
M. Pischiutta; L. Formaggia; F. Nobile : Mathematical modelling for the evolution of aeolian dunes formed by a mixture of sands: entrainment-deposition formulation; Communications in Applied and Industrial Mathematics. 2011. DOI : 10.1685/journal.caim.377.
[24]
J. Back; F. Nobile; L. Tamellini; R. Tempone : Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients; ESAIM Proceedings. 2011. DOI : 10.1051/proc/201133002.
[23]
F. Nobile; J. Back; L. Tamellini; R. Tempone : Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison; Spectral and high order methods for partial differential equations : selected papers from the ICOSAHOM ’09 Conference, June 22-26, Trondheim, Norway; Berlin: Springer, 2011. p. 43-62.
[22]
G. Dubini; D. Ambrosi; P. Bagnoli; F. Boschetti; E. G. Caiani et al. : Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems; Journal Of Applied Biomaterials & Biomechanics. 2011. DOI : 10.5301/JABB.2011.8585.
[21]
F. Nobile; I. Babuska; R. Tempone : A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data; Siam Review. 2010. DOI : 10.1137/100786356.
[20]
L. Gerardo-Giorda; F. Nobile; C. Vergara : Analysis And Optimization Of Robin-Robin Partitioned Procedures In Fluid-Structure Interaction Problems; Siam Journal On Numerical Analysis. 2010. DOI : 10.1137/09076605X.
[19]
F. Nobile : Coupling strategies for the numerical simulation of blood flow in deformable arteries by 3D and 1D models; Mathematical and Computer Modelling. 2009. DOI : 10.1016/j.mcm.2008.07.019.
[18]
F. Nobile; R. Tempone : Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients; INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. 2009. DOI : 10.1002/nme.2656.
[17]
S. Badia; F. Nobile; C. Vergara : Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems; Computer Methods In Applied Mechanics And Engineering. 2009. DOI : 10.1016/j.cma.2009.04.004.
[16]
S. Badia; F. Nobile; C. Vergara : Fluid-structure partitioned procedures based on Robin transmission conditions; Journal Of Computational Physics. 2008. DOI : 10.1016/j.jcp.2008.04.006.
[15]
F. Nobile; R. Tempone; C. G. Webster : An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data; Siam Journal On Numerical Analysis. 2008. DOI : 10.1137/070680540.
[14]
L. Formaggia; A. Moura; F. Nobile : On the stability of the coupling of 3d and 1d fluid-structure interaction models for blood flow simulations; Esaim-Mathematical Modelling And Numerical Analysis-Modelisation Mathematique Et Analyse Numerique. 2007. DOI : 10.1051/m2an:2007039.
[13]
I. Babuska; F. Nobile; R. Tempone : A stochastic collocation method for elliptic partial differential equations with random input data; Siam Journal On Numerical Analysis. 2007. DOI : 10.1137/050645142.
[12]
I. Babuska; F. Nobile; R. Tempone : Worst-case scenario analysis for elliptic PDEs with uncertainty. 2005. EURODYN, Paris, September 4-7, 2005. p. 889-894. DOI : 10.1007/s00211-005-0601-x.
[11]
S. Prudhomme; F. Nobile; L. Chamoin; J. T. Oden : Analysis of a subdomain-based error estimator for finite element approximations of elliptic problems; Numerical Methods for Partial Differential Equations. 2004. DOI : 10.1002/num.10082.
[10]
F. Nobile : A posteriori error estimates for the finite element approximation of the Stokes problem; TICAM Report 03-13. 2003.
[9]
S. Deparis; M. A. Fernández; L. Formaggia; F. Nobile : Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions. 2003. Second MIT conference on Computational Fluid and Solid Mechanics, MIT, Cambridge MA, USA.
[8]
S. Deparis; M. A. Fernández; L. Formaggia; F. Nobile : Modified fixed point algorithm in fluid–structure interaction; Comptes rendus Mecanique. 2003. DOI : 10.1016/S1631-0721(03)00119-0.
[7]
L. Formaggia; F. Nobile; A. Quarteroni : A one-dimensional model for blood flow: Application to vascular prosthesis. 2002. p. 137-153. DOI : 10.1007/978-3-642-56288-4_10.
[6]
L. Formaggia; J. F. Gerbeau; F. Nobile; A. Quarteroni : Numerical treatment of defective boundary conditions for the Navier-Stokes equations; SIAM Journal on Numerical Analysis. 2002. DOI : 10.1137/S003614290038296X.
[5]
L. Formaggia; F. Nobile : Advances on numerical modelling of blood flow problems. 2001. ECCOMAS 2000.
[4]
L. Formaggia; J. F. Gerbeau; F. Nobile; A. Quarteroni : On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels; Computer Methods in Applied Mechanics and Engineering. 2001. DOI : 10.1016/S0045-7825(01)00302-4.
[3]
F. Nobile : Numerical approximation of fluid-structure interaction problems with application to haemodynamics. Lausanne, EPFL, 2001. DOI : 10.5075/epfl-thesis-2458.
[2]
F. Nobile; L. Formaggia : A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements; East-West Journal of Numerical Mathematics. 1999.
[1]
L. Formaggia; F. Nobile; A. Quarteroni; A. Veneziani : Multiscale modelling of the circulatory system: a preliminary analysis. 1999. p. 75-83. DOI : 10.1007/s007910050030.